

Application of Support Vector Machine In Bioinformatics

V. K. Jayaraman Scientific and Engineering Computing Group CDAC, Pune jayaramany@cdac.in

> Arun Gupta Computational Biology Group AbhyudayaTech, Indore arun@abhyudayatech.com

Given a set of sequences

RNILRNDEGLYGGQSLDVNPYHFIMQEDCNLVLYDL STSVWASNTGILGKKGCRAVLQSDGNFVVYDAEGRS LPTDTTTFKRIFLKRMPSIRESLKERGVDMARLGPW TLGNTTSSVILTNYMDTQYYGEIGIGTPPQTFKVVF DTGSSNVWVPSSKCSRLYTACVYHKLFDASDSSSYH NGTELTLRYSTGTVSGFLSQDIITVGGITVTQMFGE PFMLAEFDGVVGMGFIEQAIGRVTPIFDNIISQGVK EDVFSFYYNRDSENSQSLGGQIVLGGSDPQHYEGNF TGVWQIQMKGVSVGSSTLLCEDGCLALVDTGASYIG STSSIEKLMEALGAKKRLFDYVVKCNEGPTLPDISF

Can we Identify Allergen causing Sequences?

Introduction continue....

Given a set of proteins

Can we do the structure based classification?

Introduction continue....

SUPPORT VECTOR CLASSIFICATION ALGORITHM

- Introduced by Vapnik and co-workers in 1992
- Rigorously based on
 - Statistical Learning Theory
 - Perceptron
- SVM Classifier can Recognize Patterns efficiently
- Solve Real Life Problems in :
 - Chemo/Bio Informatics
 - Many many other fields

IDENTIFICATION OF ORDERED DISORDERED

- What is the importance of identifying disordered regions in proteins..?
- Dunker *et al.* have predicted the disordered regions in proteins only on the basis of hydrophobicity and charge.
- We shall now study how this can be done be supervised and unsupervised classification.

Supervised or Unsupervised

Supervised or Unsupervised

- Unsupervised : Provided a set of features algorithm groups data into clusters (does not require class information).
- Supervised : Employs class label information of some instances to build a model. Model is validated employing unseen data

Unsupervised Classification

> Algorithm will cluster the data points into groups

> Input

Class information need not be provided

Supervised Classification

> Input ordered Mean Hydrophobicity **Net Charge** Class -1.68 -7 1 -1.315 1 1 -1.464 0 1 -1.961 2 -1 -2.003 3 -1 -1.594 -7 -1 disordered

≻Algorithm will be trained on a set of given data points.

- ➤This algorithm will classify unseen data points into classes
- Class information is need for training

- SVM can be employed for both supervised and unsupervised classification
- Supervised classifications is more popular
- Entire lecture Is based on "supervised methodology"

General Approach

सी डैक **⊂⊃∩⊂**

Algorithm contd...

SVM employs a linear hyperplane

- **X** : **X**₁, **X**₂, **x**₃, Input Vector
- y : +1 class 1
- y : -1 class 2

Which Hyperplane is Better ?

Algorithm contd..

Maximum Margin Classifier

- Constrain the data belonging to two different classes to be at least distance '1' from the separating hyperplane
- Minimize the risk of overfitting by choosing the maximal margin hyperplane in feature space

Limitations of Linear Classifier

> Linear classifier is not always the winner.

Learning in the Feature Space

> Map the data into a feature space where they are linearly separable

Input Space

Feature Space

Learning in the Feature Space

Mean Hydrophobicity	Net Charge	Class
-1.68	-7	1
-1.464	0	1
-1.961	2	-1
-2.003	3	-1

Can we have a function that transforms lower dimensional non-Separable data into higher dimensional separable data

 $x \implies \phi(x)$

Algorithm contd..

Learning in the Feature Space

SVM Linear Classifier in High Dimensional Space

- Real life problems have several input features
 - Gene Expression Profiles \rightarrow Thousands of Genes
 - Drug Discovery → More than 100 thousand
 Descriptors
- Eg. 256 dimensional data, polynomial of degree 5 gives the feature space dimension ≈ 10¹⁰

Working in high dimensional feature spaces solves the problem of expressing complex functions

BUT....

- Computationally intractable
- Data Dimensionality increases exponentially in the feature space

Introduce kernel functions for simplification

- > The linear classifier relies on dot product between vectors $K(x_i,x_j)=x_i^Tx_j$
- ► If every data point is mapped into high-dimensional space via some transformation Φ : $x \rightarrow \phi(x)$, the dot product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^{\mathrm{T}} \varphi(\mathbf{x}_j)$$

A kernel function is some function that corresponds to an inner product in some expanded feature space.

• Linear kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

• Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$

• Gaussian (Radial-Basis Function (RBF)) kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$

• Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\boldsymbol{\beta}_0 \mathbf{x}_i^T \mathbf{x}_j + \boldsymbol{\beta}_1)$$

- Probably the most tricky part of using SVM.
- The kernel function is important because it creates the kernel matrix, which summarizes all the data
- In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try
- Note that SVM with RBF kernel is closely related to RBF neural networks, with the centers of the radial basis functions automatically chosen for SVM

Identification of protein functions Gene functions Micro array Classification

Identification of protein function सीडेक

- Secondary structure prediction
- Identification of binding sites
- Sub nuclear localization of proteins
- Sub cellular localization
- Protein-protein interaction prediction
- Prediction of protein disorder

Identification of gene functions

- Promoter prediction
- Prediction of tissue specific localization of genes
- Prediction of DNA methylation sites
- DNA hot spots prediction

- Lukemia prediction
- Colon cancer prediction
- Prediction of several genetic disorders
- No of examples less & No Of Features very Large.
- Employ Feature Selection

Domain features extraction

Protein function Identification :

- ≻Numerical representation of the sequence.
- ➤Amino acid frequencies
- Dipeptide frequencies
- Tripeptide frequencies
- ≻K-mer frequencies
- ➤Homology information in terms of Blast and Psi-blast profiles.
- ➢ Remote Homology using PSSM
- ➤ Motive information
- Secondary Structure information
- ➢Physical propertied like hydrophobic, hydrophilic, charge, etc.
- Structural features like surface accesibility, co-ordinates of atoms, contact order.

Features extraction

Protein function Identification :

Numerical representation of the sequence.

can be done for 20 amino acids

Features extraction

Protein function Identification :

Amino acid frequencies

Features extraction

Protein function Identification :

Secondary structure information:

Feature Calculation

Commonly used Methods for Parameter Tuning

- k-fold cross validation
- Leave-one-out error estimation

- The training data is randomly split into k mutually exclusive subsets (or the folds) of approximately equal size
- For k times
 - SVM decision rule is obtained using k -1 of the subsets
 - Then tested on the subset left out

Validation error = Average of three errors

- Extreme form of k -fold cross-validation
 - k is equal to the number of examples, /
- For / times
 - SVM decision rule is obtained using **/**-1 of the examples
 - Then tested on the subset left out example
- Good thing about LOO
 - Almost unbiased estimate of the expected generalization error
- Limitation
 - Computationally expensive since computations require running the training algorithm *I* times.

Sensitivity =	$\frac{TP}{TP + FN}$	<i>TP</i> = True Positive <i>TN</i> = True Negative
Specificity =	$\frac{TN}{TN + FP}$	<i>FP</i> = False Positive <i>FN</i> = False Negative
Precision =	$\frac{TP}{TP + FP}$	

Matthew's Correlation Coefficient

$$MCC(X) = \frac{TPTN - FPFN}{\sqrt{(TN + FN)(TP + FN)(TN + FP)(TP + FP)}}$$

Cyclin Pred http://bioinfo.icgeb.res.in/cyclinpred/ CyclinPred is a SVM based prediction method to identify novel cyclins using various features of proteins. SS PRED http://www.bioinformatics.org/sspred/html/sspred.html Identification & Classification of proteins involved in bacterial secretion systems

Bayes Server http://immunopred.org/bayesb/server/index.html BayesB: Server for SVM Prediction of Linear B-cell Epitopes using Bayes Feature Extraction

NRpred http://www.imtech.res.in/raghava/lgepred/ This server allows user to analyse the expression data (Microarray Data).

UbiPred

http://iclab.life.nctu.edu.tw/ubipred/

UbiPred is a SVM-based prediction server using that detects the presence /absence of ubiquitylation site in a protein sequence.

OUR WORK

HLAB27Pred

A machine learning HLA-B*2705 Binders Prediction Method

- HLA-B27 is found to be associated with the development of variety of autoimmune diseases including Ankylosing spondylitis.
- Several theories have been proposed to explain the association of HLA-B27 with spondyloarthritis.
- *HLAB27Pred* will be helpful in designing new peptide vaccines through the prediction of corresponding binding peptides.

 HLAB27Pred is a server designed for the prediction of HLA-B*2705 (MHC class I allele) based nanomer epitopic binding peptides. Server implements 2 techniques for the purpose of prediction, viz. SVM and PSSM.

UnPublished (under Review)

- SVM based prediction are deployed by training a set of experimentally validated nanomeric binding and nonbinding peptides.
- The performance of the SVM predictions has been tested through **5 cross-validation**.
- The <u>specificity</u> and <u>sensitivity</u> obtained during the development of this server is 84.54% and 85.57% respectively.
- Whereas average <u>precision</u> and average <u>MCC</u> values were observed to be <u>84.69%</u> and <u>0.8%</u> respectively.

UnPublished (under Review)

		A mach	H ine learning HL	LAB271 A-B*2705	Pred Binders Predict	ion Method	
	AR	De IN			AN		
Home	Algorithm	Overview	Developers	Help			

HLAB27Pred

HLA-B27 is found to be associated with the development of variety of autoimmune diseases including Ankylosing spondylitis. Several theories have been proposed to explain the association of HLA-B27 with spondyloarthritis. HLAB27Pred will be helpful in designing new peptide vaccines through the prediction of corresponding binding peptides.

Submit protein sequence(s) for prediction

Prediction Name		
Upload Sequence file Choose File No file chosen Sequence: (Type/paste FASTA format amino acid sequences) Example sequence	Prediction Settings: Method Threshold Display top Output	 SVM ○ PSSM 0.6 10 Peptides Enriched Tabular ▼
Run Prediction Reset		
Contact Us		

Copyright © 2010 . All Rights Reserved.

UnPublished (under Review)

1.282624

UnPublished (under Review)

Submit protein sequence(s) for prediction	
Prediction Name	
Upload Sequence file Browse	Prediction Settings:
Sequence: (Type/paste FASTA format amino acid sequences)	Method SVM PSSM Threshold Peptides Display top 10 Peptides Output Enriched Tabular M Plain Tabular Enriched Tabular Interactive Graphical
Run Prediction Reset	

· obligant onlot up mini uturne		te procente						
1234567890 1234567890	1234567890	123456789	90 12	3456789	0 1234567890	1234567890	1234567890	
MPLSVFÆEEF ÆEKSVKRVIG	QGLWLPCNLS	DYYYYQEFH	ID EG	GYGSIHF	V MDKATGNEVI	MKHSYKLDFS	PGILPEWWSK	
FGSLTDDLRE RVVSNHQLRV	SREAQILVQA	STVLPEMKI	LH DY	FDDGESF	I LIMDYGGRSL	ENIASSHKKK	ITNLVRYRAY	
KGNWFYKNWL KQVVDYHIKI	AHKIKITADI	GIYHNDLKF	PE NV	LVDGDHI	T IIDFGVADFV	PDENERKTWS	CYDFRGTIDY	
IPPEVGTTGS FDPWHQTVWC	FGVMLYFLSF	MEYPFHIDN	IQ FL	EVALEGE	K LDKLPEPFAQ	LIRECLSVDP	DKRPLTSLLD	
RLTELHHHLQ TIDVW								
					Drodie	tod Bioding B	ontidos	
					Preuk	ced binding P	eptities	
				Rank	Pepti	de	Score	Position
				Rank 1	Pepti RAYKGNWFY	de	Score 1.606035	Position 158
Prediction method	SVM			Rank 1 2	Pepti RAYKGNWFY LPEMKLHDY	de	Score 1.606035 1.544112	Position 158 114
Prediction method Length of input sequence	SVM 335			Rank 1 2 3	Pepti RAYKGNWFY LPEMKLHDY SVDPDKRPL	de	Score 1.606035 1.544112 1.487156	Position 158 114 307
Prediction method Length of input sequence Number of nanomers	SVM 335 327			Rank 1 2 3 4	Pepti RAYKGNWFY LPEMKLHDV SVDPDKRPL KLPEPFAQL	de	Score 1.606035 1.544112 1.487156 1.470854	Position 158 114 307 293
Prediction method Length of input sequence Number of nanomers Threshold	SVM 335 327 0			Rank 1 2 3 4 5	Pepti RAYKGNVFY LPEMKLHDY SVDPDKRPL KLPEPFAQL LYFLSFMEY	de	Score 1.606035 1.544112 1.487156 1.470854 1.391579	Position 158 114 307 293 265
Prediction method Length of input sequence Number of nanomers Threshold Top peptides requested	SVM 335 327 0 10			Rank 1 2 3 4 5 6	Preta Pepti RAYKGNVFY LPEMKLHDY SVDPDKRPL KLPEPFAQL LYFLSFMEY VPFHLDNOF	de	Score 1.606035 1.544112 1.487156 1.470854 1.391579 1.390800	Position 158 114 307 293 265 273
Prediction method Length of input sequence Number of nanomers Threshold Top peptides requested Highest score obtained	SVM 335 327 0 10 1.606035			Rank 1 2 3 4 5 6 7	PIELI Pepti RAYKGNWFY LPEMKLHDY SVDPDKRPL KLPEFFAQL LYFLSFMEY VPFHIDNQF DVFDDGFSF	de	Score 1.606035 1.544112 1.487156 1.470854 1.391579 1.390800 1.311605	Position 158 114 307 293 265 273 121

FLSFMEYPF

>>>plq197861044L_JIV3Putativesenine/threonine-proteinkinase040LOS=Invertebrateiridescentvirus3GN=IIV3-044LPE=3SV=1 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 NPLSVFAEEF AEKSVKRYIG GCLUFCNLS DVYYVQEFID EGGYGSLIRV HDKATCNEVI KHISVLDFS PILFEVUSK FGSLTDDLRE RVVSNHQLRV SREAQILVQA STVLFENKLH DYFDDGESFI LINDYGRSL ENIASSHKKK ITNLVRYRAY KGNUFYKNUL KQVVDVNIKI VHKIKILVDI GTVNNLKFE NULVDSDHIT IIDEGVADFV PDEMERKTUS CVDFRGTIDY IPFEVGTTGS FDFUHQTVUC FGVHLYFLSF MEYFFHIDNQ FLEVALEGEK LDKLFEPFAQ LIRECLSVDP DKRPLTSLLD RLTELHHHLQ TIDV4

Rank	Peptide	Score	Position
1	RAYKGNWFY	1.606035	158
2	LPEMKLHDY	1.544112	114
3	SVDPDKRPL	1.487156	307
4	KLPEPFAQL	1.470854	293
5	LYFLSFMEY	1.391579	265
6	YPFHIDNQF	1.390800	273
7	DYFDDGESF	1.311605	121
8	FSPGILPEW	1.289297	69
9	FLSFMEYPF	1.282624	267
10	IIDFGVADF	1.275811	211

Rank	Peptide	Score	Position
1	RAYKGNUFY	1.606035	158
2	LPEMKLHDY	1.544112	114
3	SVDPDKRPL	1.487156	307
4	KLPEPFAQL	1.470854	293
5	LYFLSFMEY	1.391579	265
6	YPFHIDNQF	1.390800	273
7	DYFDDGESF	1.311605	121
8	FSPGILPEW	1.289297	69
9	FLSFMEVPF	1.282624	267
10	IIDFGVADF	1.275811	211

- SVMLight
- LibSVM
- WEKA and Bio-Weka
- MATLAB

Questions and/or Comments...?

Thank You...